

Innovative Technologies for Agri-Waste Management: Towards Zero-Waste Farming System

Rita Fredericks^{1*},
Deepak Laxman Katgar²,
Parvi Garg³, **Khan Chand⁴**

¹CEO, Precision Grow (A Unit of Tech Visit IT Pvt Ltd)

²M.Sc. (Ag.) Agronomy,
Mahatma Jyoti Rao Phoole University, Jaipur Rajasthan
(Mahatma Jyoti Rao Phoole College of Agriculture and Research)- 302019

³B.Sc. Microbiology Hons.
Department of Microbiology,
Meerut Institute of Engineering And Technology, Pincode- 250001

⁴Professor, Department of Agricultural Engineering, School of Agricultural Sciences, Nagaland University, Medziphema Campus- 797106, Distt: Chumukedima, Nagaland

Open Access

*Corresponding Author

Rita Fredericks*

Article History

Received: 29. 11.2025

Revised: 4. 12.2025

Accepted: 9. 12.2025

This article is published under the terms of the [Creative Commons Attribution License 4.0.](https://creativecommons.org/licenses/by/4.0/)

INTRODUCTION

Agriculture is the backbone of the global economy, also providing food, fiber, and raw materials. However, with intensive agriculture, large amounts of waste are produced-major crop residues, husks, stalks, leaves, fruit peels, and animal manure. The majority of this waste is traditionally burned or left to decompose, producing greenhouse gas emissions, causing air pollution, and depleting soil nutrients.

Zero-waste farming puts emphasis on the full valorization of farm-generated residues for soil health improvement, energetic uses, and production of value-added products, reducing environmental impacts. Only by adopting various kinds of innovative technologies will sustainable agriculture, resource efficiency, and climate mitigation be possible.

2. Types of Agricultural Waste

1. Crop Residues – straw, stalks, husks, and leaves.
2. Processing Waste - fruit and vegetable peels, seed shells, bran.
3. Animal Waste – manure, bedding material and slurry.
4. Post-Harvest Waste - spoiled crops, damaged grains, and food leftovers.

Efficient management can improve soil fertility, reduce environmental pollution, and create additional sources of revenue.

Source: <https://invrecovery.org/>

3. Innovative Technologies for Agri-Waste Management

3.1 Composting and Vermicomposting

Composting and Vermicomposting are environmentally friendly techniques for managing agricultural and organic waste. Composting is basically the process of conversion of crop residues, vegetable waste, and animal manure into useful, nutrient-rich organic matter to improve soil fertility. Vermicomposting, a special type of composting, uses earthworms to accelerate decomposition, which further enhances the availability of nutrients, especially nitrogen, phosphorus, and potassium. Both techniques improve soil structure, increase water retention, and reduce dependency on chemical fertilizers, hence promoting environmentally friendly farming. These methods contribute to sustainable agriculture, circular resource use, and long-term

soil health while supporting climate-smart farming.

3.2 Anaerobic Digestion and Biogas Production

Anaerobic Digestion and Biogas Production is a highly viable method of agricultural waste management, coupled with renewable energy production. Crop residues, animal manure, and other organic waste are decomposed in an oxygen-free environment, or anaerobically, to produce biogas-comprised mostly of methane and a slurry rich in nutrients. It can serve as fuel for cooking, electricity generation, and heating; thus, it provides a source of clean energy for farms and homes. The slurry is organic fertilizer that enhances soil fertility, thus cutting the use of chemical fertilizers. Common technologies include batch digesters, plug-flow digestors, and floating-drum biogas plants, which are suitable for small and large farm categories.

Source: <https://wastersblog.com/>

3.3 Bioenergy and Biofuel Production

transforms agricultural residues into much-needed renewable energy sources. Crop residues, husks, and shells can be converted into bioethanol, bio-oil, and pelletized biomass that can be used for electricity generation, heating, and industrial energy needs. The integration of these biofuels with power plants and industrial energy systems contributes to reduced dependence on fossil fuels and lowering of greenhouse gas emissions. Advanced conversion technologies, such as pyrolysis and gasification, improve energy efficiency and yield. By utilizing farm waste for energy production, bioenergy and biofuel technologies support sustainable agriculture and circular economy practices, adding to the mitigation of climate change.

3.4 Mushroom and Fodder Production

Mushroom and Fodder Production offers effective use of farm residues through various innovations. Straw, husks, and stalks from crops are good substrates for edible mushroom cultivation, whereby low-value wastes are transformed into nutritious food. In addition to that, these wastes can be converted into green fodder in hydroponics, which forms quality feed for improved livestock productivity. Such methods decrease environmental pollution by residue burning or decomposition and improve resource use efficiency at the farm level. Upon their integration with farm systems, the methods for mushroom and fodder production enable farmers to use farm wastes in a very sustainable manner and ensure circular agriculture.

3. Biochar and Soil Amendment

It is an innovative way to improve soil health while managing agricultural waste. Through pyrolysis, crop residues, husks, and other organic wastes are converted into biochar—a stable form of carbon. Added to soil, biochar enhances soil fertility, improves water retention in soils, and promotes carbon sequestration, thereby reducing greenhouse gas emissions. It also supports microbial activity and improves nutrient availability and soil structure. With biochar incorporated into farm production systems, farmers can practice climate-smart agriculture, improve crop productivity, and sustain long-term soil health; hence, it is a sustainable and eco-friendly method of soil amendment.

3.6 Wastes-to-Value Products

Waste-to-Value Products is a sustainable approach to convert agricultural residues into economically and environmentally valuable products. Residues from crops, husks, and other wastes in the farms can be transformed into packaging material, paper, biodegradable plastic, and organic extracts that reduce waste and minimize environmental pollution. Innovation in biodegradable packaging reduces plastic pollution and brings extra profits to farmers by adding value to the products. Through the integration of waste-to-value technologies, agricultural residues are not discarded but instead used effectively, enabling circular economy practices. Since they enable sustainable agriculture, enhance farm profitability, and contribute to eco-friendly production systems, such approaches should be supported.

4. Integrated Farm Waste Management Strategies

Integrated Farm Waste Management is crucial for zero-waste and sustainable farming. Segregation at source involves separating crop residues, animal manure, and post-harvest waste at the source itself, making processing easy and utilization efficient. On-farm utilization converts these wastes into valuable products through composting, fodder production, and bioenergy generation, reducing dependency on chemical inputs and fossil fuels. Centralized facilities at

the community level, including biogas plants, composting units, and biomass processing centers, enhance resource efficiency and confer collective benefits to local farmers.

Policy support is also crucial in enabling subsidies, training programs, and incentives to assist farmers in the development and adoption of innovative waste management technologies. By putting all these measures together, agricultural residues can be put into full use with minimal environmental pollution while farm productivity and income are maximized. Altogether, these methods facilitate circular agriculture, resource conservation, and sustainable rural development.

5. Challenges and Limitations

In addition, agricultural waste management is one of the major barriers to adopting innovative technologies. Most smallholder farmers are excluded by the high initial investment costs of advanced equipment for processing. Limited awareness and technical knowledge further reduce the effective use of such technology. Constraints related to infrastructure for the storage, transportation, and processing of crop residues further complicate agricultural waste management. Moreover, market and value-chain gaps for products from agricultural waste limit income opportunities for farmers. Capacity building through training and technological support, backed by strong policy interventions, is needed in this regard. As these barriers are addressed, resource efficiency can increase, circular agriculture could be promoted, and farm productivity and sustainability improved.

6. Future Prospects

- The integration of IoT, AI, and precision agriculture in smart farming can optimize waste collection and utilization.
- Development of low-cost, modular technologies for smallholder farmers.
- Bio-refinery approaches for simultaneous production of energy, compost, and value-added products.
- Contribution to sustainable agriculture, climate change mitigation, and rural income generation.

CONCLUSION

Innovative technologies in agri-waste management offer a route toward zero-waste farming. Efficient utilization of crop residues, animal waste, and postharvest by-products improves soil health, generates renewable energy, and enhances farm incomes. Adoption of such technologies, coupled with policy support and farmer awareness, is crucial for sustainable climate-resilient agriculture.

REFERENCES

FAO. (2023). *Management of Agricultural Waste for Sustainable Agriculture*. Rome: FAO.

ICAR. (2022). *Guidelines for On-Farm Waste Management and Circular Agriculture*. New Delhi: Indian Council of Agricultural Research.

Kumar, A., & Singh, R. (2024). *Agri-Waste Utilization Technologies in India*. Journal of Cleaner Production, 385, 135-150.

Lackner, M., & Besharati, M. (2025, June). Agricultural Waste: Challenges and Solutions, a Review. In *Waste* (Vol. 3, No. 2, p. 18). MDPI.

Nicastro, R., Papale, M., Fusco, G. M., Capone, A., Morrone, B., & Carillo, P. (2024). Legal barriers in sustainable agriculture: valorization of agri-food waste and pesticide use reduction. *Sustainability*, 16(19), 8677.

Singh, P., & Sharma, V. (2023). *Bioenergy Potential from Crop Residues*. Renewable Energy, 196, 789–805.