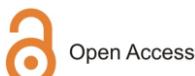


Integrated Farming Systems (IFS) for Doubling Farmers' Income


N Krishna Priya^{1*},
Sambit Kumar Parida²,
Shafiya Fayaz³,
Anil Kumar⁴

¹Coordinator, DAATTC Kadapa-516003, ANGRAU, Guntur.

²Senior Research Fellow (SRF), Department of Agronomy, Regional Research & Technology Transfer Station (RRTTS), Bhowanipatna, Odisha University of Agriculture & Technology (OUAT), Bhubaneswar, Odisha-766001

³Ph.D. Research Scholar, Division of Agronomy, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu & Kashmir, Wadura-193201, India.

⁴Assistant Professor, Dept. of Agronomy, School of Agriculture, Eklavya University Damoh, Madhya Pradesh-470661

*Corresponding Author
Swati Sharma*

Article History

Received: 15.12.2025

Revised: 20.12.2025

Accepted: 25.12.2025

This article is published under the terms of the [Creative Commons Attribution License 4.0](https://creativecommons.org/licenses/by/4.0/).

INTRODUCTION

Agriculture is the backbone of the Indian economy, supporting nearly 58% of the population for livelihood. However, Indian farmers face several challenges including fragmented landholdings, low productivity, rising input costs, market uncertainties, and climatic risks. According to recent estimates, more than 85% of farmers are small and marginal, owning less than 2 hectares of land. Under such conditions, monocropping or single-enterprise farming often fails to provide adequate income and year-round employment.

To address these challenges, the Government of India has emphasized the goal of doubling farmers' income through improved productivity, diversification, cost reduction, value addition, and risk management. Integrated Farming Systems (IFS) emerge as a sustainable and practical approach that integrates various agricultural and allied enterprises in a complementary manner.

IFS not only enhances farm income but also ensures food and nutritional security, employment generation, efficient utilization of resources, and ecological balance. It is especially relevant under the present scenario of climate change and declining natural resources.

Source: <https://www.cmv360.com>

2. Concept and Definition of Integrated Farming System

An Integrated Farming System (IFS) is a holistic farm management approach in which different agricultural and allied enterprises are judiciously integrated on a single farm to achieve higher productivity, profitability, sustainability, and livelihood security.

Definition

Integrated Farming System can be defined as:

“A farming system that integrates crop production with one or more allied enterprises such as livestock, poultry, fisheries, agroforestry, horticulture, beekeeping, and mushroom cultivation in a mutually beneficial manner, ensuring efficient resource recycling and enhanced farm income.”

The core idea of IFS is that the waste of one enterprise becomes the input for another, thereby

reducing production costs and improving resource-use efficiency.

3. Objectives of Integrated Farming Systems

The major objectives of IFS include:

- To increase overall farm productivity and income.
- To ensure year-round employment for farm families.
- To enhance efficient utilization and recycling of farm resources.
- To reduce dependence on external inputs.
- To minimize risk due to climatic and market uncertainties.
- To promote sustainable and environmentally friendly agriculture.
- To improve food, fodder, and nutritional security.
- To strengthen resilience of farming systems under climate change.

Source: <https://krishijagran.com>

4. Principles of Integrated Farming Systems

The success of an Integrated Farming System (IFS) depends on a set of well-defined principles that ensure efficient utilization of resources, economic viability, and long-term sustainability. These fundamental principles guide the design and implementation of IFS models suitable for different farming situations.

4.1 Diversification: Diversification is the cornerstone of IFS. Integration of multiple enterprises such as crops, livestock, fisheries, poultry, and allied activities reduces dependence on a single source of income. This approach helps farmers minimize risks associated with crop failure, price fluctuations, and climatic uncertainties, while ensuring regular income throughout the year.

4.2 Resource Recycling: IFS emphasizes efficient recycling of farm resources. Crop residues, animal dung, poultry litter, and other farm wastes are reused as manure, compost, or feed within the system. This reduces waste generation, lowers input costs, and improves nutrient-use efficiency.

4.3 Complementarity: Different enterprises in IFS are designed to complement each other. The output or by-product of one component serves as an input for another, thereby enhancing overall system efficiency and productivity.

4.4 Sustainability: IFS promotes sustainable agriculture by maintaining soil fertility, conserving biodiversity, and minimizing environmental pollution. Balanced integration ensures long-term productivity without degrading natural resources.

4.5 Location-Specific Planning: IFS models must be tailored according to local agro-climatic conditions, available resources, market demand, and socio-economic status of farmers to ensure maximum benefits and adoption.

5. Components of Integrated Farming Systems

An Integrated Farming System (IFS) consists of various interrelated agricultural and allied enterprises that function together to improve farm productivity, profitability, and sustainability. The selection of components depends on agro-climatic conditions, resource availability, and farmers' socio-economic status.

5.1 Crop Production: Crop production forms the backbone of IFS. Integration of cereals, pulses, oilseeds, vegetables, fodder crops, and cash crops ensures food security, income generation, and soil fertility improvement. Crop residues also serve as feed and organic matter for other enterprises.

5.2 Livestock (Dairy, Sheep, Goat): Livestock plays a vital role in IFS by providing milk, meat, manure, and draught power. Animals convert crop residues and farm by-products into valuable outputs. Animal dung is an important source of organic manure and biogas, enhancing nutrient recycling.

5.3 Poultry: Poultry farming is a low-investment, quick-return component of IFS. It provides eggs and meat, while poultry manure, rich in nutrients, improves soil fertility and crop productivity.

5.4 Fisheries: Fish farming integrated with crops and livestock efficiently utilizes water resources. Fish ponds can receive nutrient-rich farm wastes, enhancing fish growth while providing an additional income and improving household nutritional security.

5.5 Horticulture: Horticultural crops such as fruits, vegetables, flowers, and plantation crops generate high economic returns and create employment opportunities. They also diversify farm income and enhance nutritional availability.

5.6 Agroforestry: Agroforestry integrates trees with crops and livestock, providing timber, fuelwood, fodder, fruits, and environmental benefits such as soil conservation and carbon sequestration.

5.7 Allied Enterprises: Allied activities like beekeeping, mushroom cultivation, vermicomposting, sericulture, and biogas production add value, utilize farm wastes efficiently, and diversify income sources, making

the farming system more resilient and sustainable.

6. Integrated Farming System Models

Integrated Farming System (IFS) models are designed by combining different farm enterprises in a complementary manner to maximize productivity, profitability, and sustainability. The choice of an IFS model depends on agro-climatic conditions, availability of resources, and farmers' needs.

6.1 Crop–Livestock System : The crop–livestock system is the most common and traditional IFS model. In this system, crops provide fodder and residues for livestock, while livestock supplies manure for crop fields. This mutual interaction improves soil fertility, reduces input costs, and generates additional income through milk, meat, and draught power.

6.2 Crop–Fish–Livestock System: This model is widely practiced in eastern and coastal regions of India where water resources are abundant. Crop residues and animal wastes are utilized as fish feed, enhancing fish productivity. The system ensures efficient use of land and water resources while providing diversified income and improved nutritional security.

6.3 Crop–Horticulture–Livestock System; Integration of high-value horticultural crops such as fruits and vegetables with dairy or goat farming significantly increases farm income. Horticulture provides regular cash flow, while livestock contributes manure and additional income, making the system economically efficient.

6.4 Crop–Agroforestry–Livestock System: This model is suitable for dryland and rainfed regions. Integration of trees with crops and livestock provides long-term income through timber, fuelwood, and fodder, while improving soil conservation and climate resilience.

6.5 Integrated Organic Farming System: The integrated organic farming system combines crops, livestock, composting, and bio-inputs to produce chemical-free agricultural products. This system reduces dependency on external inputs, enhances soil health, and offers premium market value for organic produce.

7. Role of Integrated Farming Systems in Doubling Farmers' Income

Integrated Farming Systems (IFS) play a crucial role in achieving the goal of doubling farmers' income by improving productivity, profitability, and sustainability of farming enterprises. IFS

contribute to income enhancement through multiple interconnected pathways.

7.1 Increased Productivity: Integration of crops with livestock, fisheries, horticulture, and allied enterprises increases total farm output per unit area. Efficient utilization of land, water, and nutrients leads to higher overall productivity compared to single-enterprise farming.

7.2 Income Diversification: IFS provides multiple sources of income such as crops, milk, eggs, fish, fruits, and value-added products. This diversification ensures a steady flow of income throughout the year and reduces dependence on a single crop or enterprise.

7.3 Cost Reduction: Internal recycling of farm resources like crop residues, animal dung, and farm wastes reduces expenditure on chemical fertilizers, animal feed, and energy. This significantly lowers the cost of cultivation and increases net income.

7.4 Employment Generation: IFS generates year-round employment opportunities for farm families by engaging them in various farm and allied activities. This reduces seasonal unemployment and rural migration.

7.5 Risk Mitigation: Diversification of enterprises helps minimize risks associated with climate variability, pest outbreaks, and market price fluctuations. Losses in one component are compensated by gains in others.

7.6 Value Addition: Processing, packaging, and direct marketing of farm produce increase farmers' share in the consumer price, further enhancing income and economic stability.

8. Economic Benefits of Integrated Farming Systems

Integrated Farming Systems (IFS) offer significant economic advantages over conventional mono cropping. Several studies have demonstrated that IFS models can generate two to three times higher net income by efficiently utilizing farm resources and integrating complementary enterprises. The benefit-cost ratio is substantially higher due to reduced input costs and increased overall productivity. Improved input-output efficiency ensures better returns per unit of investment, while enhanced profitability per unit land makes IFS especially suitable for small and marginal farmers. Moreover, diversified income sources provide stable and sustainable earnings throughout the year. Thus, IFS serves as a reliable strategy for strengthening livelihood

security and economic resilience of farming households.

9. Environmental and Social Benefits of Integrated Farming Systems

Integrated Farming Systems (IFS) provide significant environmental and social benefits, contributing to sustainable agricultural development and rural well-being.

9.1 Soil Health Improvement: Regular application of organic manures, compost, and crop residues under IFS improves soil structure, enhances nutrient availability, and increases microbial activity. This leads to improved soil fertility and long-term productivity.

9.2 Biodiversity Conservation: Integration of diverse crops, livestock, fisheries, trees, and allied enterprises promotes on-farm biodiversity. Enhanced biodiversity helps maintain ecological balance and reduces the risk of pest and disease outbreaks.

9.3 Climate Resilience: IFS improves farmers' adaptability to climate change by diversifying enterprises and conserving natural resources. It reduces vulnerability to droughts, floods, and temperature extremes, ensuring stable production under adverse conditions.

9.4 Social Empowerment: IFS generates employment opportunities for women and rural youth through allied activities such as poultry, dairy, mushroom cultivation, and value addition. This enhances income, skill development, and social empowerment at the household level.

10. Constraints in Adoption of Integrated Farming Systems

Despite the numerous benefits of Integrated Farming Systems (IFS), their adoption remains limited due to several constraints. One of the major challenges is the lack of awareness and technical knowledge among farmers regarding enterprise integration and resource recycling. Initial investment requirements for infrastructure, livestock, or allied enterprises often discourage small and marginal farmers. Limited access to institutional credit and crop or livestock insurance further restricts adoption. Inadequate extension support and weak linkage between research and farmers result in poor dissemination of IFS technologies. Additionally, marketing constraints and underdeveloped value chains reduce profitability. Small and fragmented landholdings also make systematic integration of multiple enterprises difficult.

11. Strategies to Promote Integrated Farming Systems

To enhance the adoption of IFS, a multi-pronged approach is essential. Strengthening extension services through training, demonstrations, and capacity-building programs can improve farmers' awareness and skills. Financial support, subsidies, and easy access to credit should be provided to reduce initial investment barriers. Development of location-specific IFS models based on agro-climatic conditions is crucial for success. Promoting Farmer Producer Organizations (FPOs) can improve collective marketing and bargaining power. Encouraging value addition, processing, and strong market linkages will increase profitability. Finally, integrating IFS into government schemes and policies can accelerate its widespread adoption and impact.

12. Future Prospects of Integrated Farming Systems

With advancements in precision agriculture, ICT tools, climate-smart practices, and digital extension services, IFS has immense potential to transform Indian agriculture. Integration of renewable energy, smart irrigation, and agro-processing will further enhance profitability and sustainability. IFS is expected to play a key role in achieving national goals related to food security, income enhancement, employment generation, and sustainable development.

CONCLUSION

Integrated Farming Systems represent a sustainable, resilient, and economically viable approach for achieving the goal of doubling farmers' income. By integrating crops with livestock, fisheries, horticulture, and allied enterprises, IFS ensures efficient resource utilization, risk reduction, and livelihood

security. Adoption of IFS, supported by strong policy frameworks, research, extension, and market linkages, can significantly improve the socio-economic condition of farmers, particularly small and marginal ones. Thus, Integrated Farming Systems are not merely an alternative but a necessity for the future of sustainable agriculture.

REFERENCES

- Jadav, M. L., Bhagat, D. V., Kumawat, N., & Choudhary, S. K. (2022). Integrated farming system: way for doubling the income of rainfed farmers. *Indian Farming*, 72(2).
- Mir, M. S., Naikoo, N. B., Amin, Z., Bhat, T. A., Nazir, A., Kanth, R. H., ... & Rehman, U. (2022). Integrated farming system: A tool for doubling farmer's income. *Journal of Experimental Agriculture International*, 44(3), 47-56.
- Panwar, A. S., & Ravisankar, N. (2022). Integrated farming systems for doubling farmers' income. In *Secondary Agriculture: Sustainability and Livelihood in India* (pp. 35-45). Cham: Springer International Publishing.
- Panwar, A. S., Ravisankar, N., Shamim, M., & Prusty, A. K. (2018). Integrated farming systems: a viable option for doubling farm income of small and marginal farmers. *Bulletin of the Indian Society of Soil Science*, 32, 68-88.
- Walia, S. S., & Kaur, T. (2022). Integrated farming systems: Research, extension and scope in Punjab. In *Secondary agriculture: Sustainability and livelihood in India* (pp. 47-58). Cham: Springer International Publishing.