

Infrared Treatment for Millets: Reducing Anti-nutritional Factors for Enhanced Nutritional Quality

**Sourabh Ajit Chougala¹,
Ramappa² and
Vishwaradhy M Biradar³**

¹Ph.D. Scholar (Agril.Engg.)
Department of Processing and Food Engineering, College of Agricultural Engineering, University of Agricultural Sciences, Raichur-584101

²Ph.D. Scholar (Agril.Engg.)
Department of Processing and Food Engineering, College of Technology and Engineering, MPUAT, Udaipur, Rajasthan-313001

³Ph.D. Scholar (Agril.Engg.)
Department of Processing and Food Engineering, College of Agricultural Engineering, University of Agricultural Sciences, Raichur-584101

Open Access

*Corresponding Author
Sourabh Ajit Chougala*

Article History

Received: 16.12.2025

Revised: 21.12.2025

Accepted: 26.12.2025

This article is published under the terms of the [Creative Commons Attribution License 4.0](https://creativecommons.org/licenses/by/4.0/).

INTRODUCTION

Millets are highly valued for their nutritional benefits, including being rich in fiber, minerals, and antioxidants. However, they also contain anti-nutritional factors such as phytic acid, tannins, and polyphenols, which can reduce nutrient bioavailability and affect digestibility. Traditional processing methods like soaking, fermentation, and roasting have been used to reduce these anti-nutrients, but infrared (IR) treatment has emerged as a modern, non-invasive method that offers an efficient alternative to conventional techniques. IR treatment uses electromagnetic radiation to heat and process food, and it has shown promise in reducing anti-nutritional factors in millets while preserving their nutritional and sensory qualities.

Principles of Infrared Treatment

Infrared treatment involves exposing food to infrared radiation, which has a wavelength between 0.7 and 1000 micrometers. This radiation penetrates the food surface and generates heat through molecular vibration, leading to rapid and uniform heating. IR treatment is effective in reducing anti-nutrients because it can achieve precise control over temperature and time, which are critical factors in breaking down compounds like phytic acid and tannins without significantly affecting the food's nutritional content (Krishnamurthy *et al.*, 2008).

Mechanisms of Anti-nutrient Reduction

Infrared treatment can significantly reduce the levels of anti-nutritional factors in millets through the following mechanisms:

- **Phytic Acid Reduction:** Phytic acid is a potent anti-nutrient that binds to essential minerals, preventing their absorption. Infrared treatment can break down the phytic acid structure, leading to its degradation. Research has shown that IR treatment can reduce phytic acid content in millets by 25-35%, depending on the intensity and duration of the treatment (Dutta *et al.*, 2021).

- **Tannin and Polyphenol Reduction:** Tannins and polyphenols, responsible for the astringency and bitterness in millets, also inhibit protein and carbohydrate digestibility. Infrared treatment can reduce tannin and polyphenol content by 20-30%, improving the taste and nutritional quality of millets. This reduction is achieved through the denaturation of these compounds under controlled heating conditions (Suan *et al.*, 2017).
- **Enzyme Inactivation:** Enzymes like polyphenol oxidase contribute to the formation of anti-nutritional factors during storage and processing. Infrared treatment can effectively inactivate these enzymes, reducing their activity by 30-45%, which helps in maintaining lower levels of anti-nutrients during the shelf life of millets (Chen *et al.*, 2016).

Advantages of Infrared Treatment

Infrared treatment offers several advantages in processing millets for reducing anti-nutritional factors:

1. **Rapid and Uniform Heating:** Infrared treatment provides quick and even heating, which ensures consistent reduction of anti-nutrients across the millet batch.
2. **Non-Destructive Method:** Unlike some conventional processing methods, IR treatment does not significantly alter the nutritional profile of millets, preserving important nutrients like vitamins and amino acids.
3. **Energy Efficiency:** Infrared processing is more energy-efficient compared to traditional methods like roasting or boiling, as it requires less time and lower temperatures to achieve the desired reduction in anti-nutrients.
4. **Scalability:** IR treatment can be easily scaled up for industrial applications, making it a practical choice for large-scale millet processing.

Applications and Future Perspectives

Infrared treatment is gaining traction as a viable method for enhancing the nutritional quality of millets. Its application is particularly relevant in the production of millet-based foods aimed at health-conscious consumers. Future research may focus on optimizing the parameters of IR treatment, such as wavelength, intensity, and exposure time, to further improve the

efficiency of anti-nutrient reduction. Additionally, integrating infrared treatment with other processing technologies, like extrusion or fermentation, could lead to the development of novel millet products with enhanced nutritional benefits.

There is also potential for IR-treated millet products to cater to specific dietary needs, such as gluten-free diets, where millets are already popular. The ability to reduce anti-nutritional factors while preserving or even enhancing other nutritional properties makes infrared treatment a promising tool in the food industry.

CONCLUSION

Infrared treatment is an innovative approach to reducing anti-nutritional factors in millets. By leveraging the precise control of heat and energy, IR treatment can effectively decrease the levels of phytic acid, tannins, and polyphenols, thereby improving the bioavailability of essential nutrients and enhancing the overall nutritional profile of millets. As this technology continues to advance, it holds significant potential for broader application in the food processing industry, particularly in the production of healthier, more nutritious millet-based products.

REFERENCES

Chen, L., Wei, Y. and Luo, H. (2016). Effect of infrared treatment on enzyme inactivation and shelf-life of millet. *Journal of Food Processing and Preservation*, 40(6): 1271-1279.

Dutta, H., Mahanta, C. L. and Das, D. (2021). Reduction of phytic acid content and improvement in mineral bioavailability in millets through infrared processing. *Journal of Cereal Science*, 99: 103-113.

Krishnamurthy, K., Khurana, H. K., Jun, S., Irudayaraj, J. and Demirci, A. (2008). Infrared heating in food processing: An overview. *Comprehensive Reviews in Food Science and Food Safety*, 7(1): 2-13.

Suan, K. M., Shrestha, P. and Adhikari, B. (2017). Impact of infrared treatment on tannin and polyphenol content in millets. *Journal of Food Science and Technology*, 54(10): 3292-3299.