

Maize-Based Bioethanol: A Sustainable Pathway to India's Energy Security

Uttej Karla

Dept. of Genetics and Plant Breeding,
Maharana Pratap University of Agriculture and Technology,
Udaipur

*Corresponding Author
Uttej Karla*

Article History

Received: 15.12.2025

Revised: 20.12.2025

Accepted: 25.12.2025

This article is published under the terms of the [Creative Commons Attribution License 4.0](https://creativecommons.org/licenses/by/4.0/).

INTRODUCTION

India's rapidly growing economy has led to a steady rise in energy demand, placing the country among the world's largest energy consumers. A significant proportion of this demand continues to be met through imported fossil fuels, resulting in economic vulnerability and environmental concerns. In this context, biofuels have emerged as an important component of India's strategy for achieving energy security, environmental sustainability and rural development.

Among various biofuel feedstocks, maize (*Zea mays* L.) is increasingly gaining attention as a sustainable and efficient raw material for bioethanol production. Its agronomic adaptability, lower water requirement and high productivity make it particularly suitable for India's agro-climatic conditions.

Bioethanol and India's Policy Framework

Bioethanol is a renewable, plant-based fuel produced through the fermentation of starch- and sugar-rich crops. When blended with petrol, it reduces greenhouse gas emissions and dependence on crude oil imports.

The National Biofuel Policy (2018) and the Ethanol Blending Programme (EBP) form the backbone of India's bioenergy initiatives. The Government of India has set clear blending targets of 20% ethanol (E20) by 2025–26 and 30% ethanol (E30) by 2030. These initiatives are integral to the vision of *Atmanirbhar Bharat* and contribute significantly to climate change mitigation.

Why Maize Is Emerging as a Preferred Feedstock

Traditionally, ethanol production in India has relied largely on sugarcane. However, sugarcane and rice are highly water-intensive crops, together accounting for a major share of irrigation water use in the country. In contrast, maize offers several advantages:

- **Lower water requirement**, making it suitable for water-limited regions
- **Wide adaptability**, with cultivation possible across diverse agro-ecologies
- **Multi-season cultivation**, including Kharif, Rabi and spring seasons
- **High yield potential** and scope for productivity enhancement through hybrids
- **Lower environmental footprint** compared to conventional feedstocks

In addition, maize-based ethanol production generates Distillers' Dried Grains with Solubles (DDGS), a valuable by-product used as protein-rich animal feed. This ensures balanced utilization of maize for fuel, feed and food systems, addressing concerns related to food security.

Contribution to Energy Security, Environment and Rural Economy

The expansion of maize-based ethanol production offers multiple benefits:

- **Energy Security**: Domestic ethanol production reduces dependence on imported petroleum and saves foreign exchange.
- **Environmental Sustainability**: Reduced greenhouse gas emissions and lower water use contribute to climate-resilient agriculture and cleaner energy.

• Farmer Income and Rural Development:

Assured demand for maize provides price stability and enhanced income opportunities for farmers, strengthening rural livelihoods. Thus, maize-based bioethanol creates a synergistic link between agriculture, energy and the environment.

Challenges and Way Forward

Despite its potential, maize-based ethanol production faces challenges such as dependence on monsoon rainfall, post-harvest losses and the need for robust market and storage infrastructure. Addressing these issues requires:

- Expansion of high-yielding and climate-resilient maize hybrids
- Improved irrigation and agronomic practices
- Strengthening of procurement, storage and processing infrastructure
- Balanced planning to meet food, feed and fuel requirements

CONCLUSION

Maize is emerging as a strategic crop in India's renewable energy landscape. Achieving ethanol blending targets will require substantial expansion in maize production, estimated at 18–20 million tonnes by 2030. This transition positions maize not merely as an agricultural commodity but as a key contributor to national energy security and sustainable development.

By integrating scientific advancements, policy support and farmer participation, maize-based bioethanol can play a pivotal role in shaping a cleaner, self-reliant and resilient energy future for India.