Curr. Agri.Tren.:e- Newsletter, (2025) 4(10), 5-7

Article ID: 470

Natural farming opens the door to sustainable and climate-resilient farming systems

Yogesh Kumar^{1*}, Munish kumar², Sarvesh Kumar³, Kaushal Kumar⁴, Hemant Kumar⁵

 ¹Ph.D, Department of Soil Conservation and Water Management.
 ^{2,3and 4}Professor, Department of Soil Conservation and Water Management.
 ⁵Department of Agronomy. Chandra Shekhar Azad University of Agriculture and Technology Kanpur 208002 India

Corresponding Author Yogesh Kumar

Article History

Received: 22. 9.2025 Revised: 27. 9.2025 Accepted: 1. 10.2025

This article is published under the terms of the <u>Creative Commons</u> <u>Attribution License 4.0</u>.

INTRODUCTION

Feeding an ever-growing population while confronting the intensifying effects of climate change poses a daunting challenge. Traditional farming methods are becoming increasingly fragile in the face of erratic rainfall, extended droughts, devastating floods, and rising temperatures. At this critical crossroads, two complementary approaches—natural farming and climate-resilient agriculture—emerge as guiding lights. Although they stem from different origins, their philosophies and outcomes intersect to strengthen the foundation of a more sustainable and resilient food system.

Natural Farming: Harnessing Nature's Wisdom

Natural farming, deeply rooted in indigenous knowledge and often described as chemical-free, emphasizes harmony with ecological processes, biodiversity enhancement, and the efficient use of on-farm resources. This agroecological system integrates crops, trees, and livestock to nurture functional biodiversity. Its core principles include:

Eliminating external chemical inputs: Instead of synthetic fertilizers and pesticides, farmers rely on farm-derived formulations such as Jeevamrit (a microbial solution made from cow dung and urine), Ghanjeevamrit, and Beejamrit (used for seed treatment).

Preserving soil integrity: Avoiding deep tillage to safeguard soil structure and foster a thriving microbial ecosystem.

Prioritizing soil health: Using organic matter, cover crops, and mulching to enrich soil fertility, enhance water retention, and support nutrient cycling.

Encouraging biodiversity: Cultivating diverse plant and animal species to strengthen ecological resilience and natural pest regulation.

Conserving water: Applying methods like rainwater harvesting and mulching to reduce water stress.

Adapting locally: Designing practices tailored to the region's unique climate and environmental conditions.

Climate-Resilient Agriculture: Adapting to a Changing World

Climate-resilient agriculture (CRA) represents a forward-looking strategy aimed at enabling farmers and rural communities to anticipate, adapt to, withstand, and recover from the adverse effects of climate change. Its central goal is to strengthen agricultural systems against climatic shocks such as droughts, floods, and erratic weather.

Key principles include:

Diversification: Cultivating multiple crops and adopting diverse farming systems reduces dependence on a single commodity while harnessing natural ecosystem services.

Soil health improvement: Like natural farming, CRA promotes reduced tillage, cover cropping, and crop rotations to improve fertility, enhance carbon storage, and sustain soil productivity.

Efficient water management: Implementing rainwater harvesting, micro-irrigation systems, and soil-moisture conservation practices to optimize water use.

Climate-resilient varieties: Utilizing crop types and livestock breeds capable of withstanding heat stress and limited water availability.

Integrated pest and disease management: Prioritizing sustainable, non-chemical approaches to pest and disease control.

Agroforestry: Incorporating trees into agricultural landscapes to improve soil quality, regulate microclimates, and provide additional livelihood opportunities.

Synergy Between Natural Farming and Climate Resilience

Natural farming and CRA, while distinct in their origins, align in principles and complement each other in practice. Natural farming's emphasis on ecological integrity, biodiversity, and soil health serves as a strong foundation for climate adaptation.

Enhanced carbon storage: By eliminating chemical fertilizers and focusing on organic matter, natural farming boosts soil's carbon sequestration potential. Research indicates it can cut agricultural greenhouse gas emissions by 35–50%, directly contributing to climate mitigation.

Improved water resilience: Practices such as mulching and soil enrichment improve water-holding capacity, reducing dependence on irrigation and safeguarding farms during drought.

Biodiversity gains: Diverse cropping and livestock systems encourage natural pest

regulation, lower disease incidence, and increase resilience to climate-induced stresses.

Economic sustainability: Reduced reliance on external, fossil fuel—intensive inputs lowers production costs, insulating farmers from volatile markets and climate-related yield losses.

Buffering extreme events: Soils rich in organic matter function like sponges—absorbing excess rainfall during floods and slowly releasing it during dry spells—thus softening the impact of climate extremes.

India's Path Toward Resilient Farming Systems

Given its vast agro-climatic diversity and predominantly agrarian economy, India has taken decisive steps to promote natural and climateresilient agriculture. Programs such as the National Mission on Natural Farming (NMNF) and the Bharatiya Prakritik Krishi Paddhati (BPKP) under Paramparagat Krishi Vikas Yojana (PKVY) are equipping farmers with financial and technical support to transition to chemical-free systems. Evidence from multiple states reveals positive outcomes—including higher soil organic matter, lower input costs, better yields, and improved farm incomes. States like Bihar and Odisha are spearheading CRA initiatives through crop diversification, water conservation, and soil restoration practices.

CONCLUSION

As climate change intensifies, transforming agriculture into a system that is both sustainable and resilient is an urgent priority. Natural farming, with its ecological foundation and soilcentered practices, is more than an alternative—it is a catalyst for building resilience. When combined with climate-smart strategies, it paves the way for productive, nutritious, and sustainable food systems capable of withstanding future climatic uncertainties. Embracing nature's wisdom alongside modern adaptation measures ensures food security, farmer prosperity, and environmental health for generations to come.

REFERENCES

Bharucha, Z. P., Mitjans, S. B., & Pretty, J. N. (2020). Towards redesign at scale through zero-budget natural farming in Andhra Pradesh, India. Environmental Sustainability Journal, 12(3): 114-128.

Chimi, C., Wangmo, T., & Dorji, Y. (2022). Biodiversity and soil health restoration through sustainable agricultural

practices. Journal of Agroecology and Environmental Studies, 28(1): 45-62.

Gonzales, L. S., Pereira, C. A., & Santos, M. R. (2019). Revitalizing traditional agricultural practices in rural Brazil through natural farming techniques. Agroecology and Rural Development Journal, 34(2): 56-71.

Johnson, M., Rahman, S. A., & Ahmed, S. (2021). Strengthening food security and

climate resilience through sustainable agriculture in Bangladesh. Journal of Food Security and Climate Change, 18(4): 79-94.

Lakhani, H., Chinchure, S., & Geete, M. (2024).

Natural Farming: A Strategic Tool for Climate Change
Int.J.Curr.Microbiol.App.Sci. 198-205